

Welcome to UForge AppCenter Admin Documentation

This documentation is intended for Administrators of the UForge AppCenter. It covers an architecture presentation, installation instructions, as well as all the necessary steps to configure, manage and monitor your AppCenter once installed.

Note: There are multiple options for reading this documentation - click on the link at the lower left hand corner for these options.

Contents:

	Architecture Considerations
	UForge Platform Overview

	Reliability

	Security

	Storage Considerations

	Scalability through Partitioning

	Image Generations

	Estimating Scan Size

	Deployment Examples

	Network Topology

	Minimum Software Topology

	Security Options

	High Availability

	Installing UForge
	UForge Installation Overview

	UForge Repository Setup

	UForge Repository on Shared Storage

	UForge Repository on Local Storage

	Installing from an ISO

	Post-Installation Cleanup

	Configuring UForge

	Cloud Platform Default Ports

	Testing the Deployment

	Further AppCenter Configuration
	Modifying the UForge Platform External URL Endpoints

	Adding a Compute Node

	Removing a Node

	Configuring Apache and Tomcat Web Services to use SSL Certificate

	Configuring SMTP Proxy

	Configuring UForge Behind Enterprise Proxy

	Configuring the Web Service

	Configuring the Database

	Configuring the Scheduler

	Managing the Watchdog Services

	Tuning the Services

	Using the Event Bus

	Configuring Email Notification Service

	Modifying the UForge IP

	Customizing UForge Authentication for SSO

	Allowing https Repositories with Self-Signed Certificate

	Populating Database with OS Packages

	Updating an OS Repository

	Deleting an OS Repository

	Hosting Proprietary Packages

	Populating ISO Skeleton

	Configuring Cloudsoft AMP

	Setting the Creation Date and Time

	Updating your UForge AppCenter
	Updating an Existing UForge Deployment

	Migrating UForge from 3.7 to 3.8

	Going Back to a Previous Version of a UForge Deployment

	Retrieving Data from UForge

	Sending a Request to UForge

	Backup Overview Guidelines
	Backup Overview Guidelines

	Backup Recommendations

	Using Master-Slave Replication for Database Backup

	UForge Databases Basic Backup

	Basic Restore

	User Data Backup

	Managing Services
	Starting and Stopping the Application Server

	Starting and Stopping the Database

	Managing Resources
	Viewing the Installed OSes

	Viewing the Enabled OSes

	Adding an OS to an Organization

	Updating a Repository

	Removing OSes and Distributions

	Creating Custom OS Profiles

	Editing Custom OS Profiles

	Allowing Access to Image Formats

	Microsoft Windows and UForge

	Creating a Golden Image from Scan

	Creating a Golden Image Manually

	Managing the Project Catalog

	Creating and Managing Categories

	Creating and Managing Milestones

	Managing Users
	Managing User Accounts

	RBAC Overview

	Granting a User Administrator Rights

	Setting Quotas

	Managing User Access to Operating Systems

	Managing User Access to Formats

	Granting a User API Access

	Granting a User Supervisor Rights

	Retrieving Logs and Troubleshooting
	Viewing the Web Service Logs

	Viewing Current Jobs in the Scheduler

	Viewing the Logs of a Job

	Retrieving Logs Using machine_info Script

	Using Supervisor Mode

	Getting Support

	UForge Tooling
	Using the CLI Tool

	Rebranding Your UForge GUI
	Creating Dedicated Image Directory

	Modifying the Sign-In and Sign-Up Page

	Modifying the Signed In Header

	Modifying the Footer

	Restricting Change Password

	Restricting User Profile Usage

	Restricting Formats

	Restricting the Cloud Accounts

	Customizing the CSS

	Customizing the Platform

	Troubleshooting

	GDPR Compliance
	User Data in UForge

	Retrieving User Data

	Updating User Data

	Exporting User Data for Portability

	Deleting User Information

	Deleting User Information Using SQL

	Changelog
	3.8-7

	3.8-6

	3.8-5

	3.8-4

	3.8-3

	3.8-2

	3.8-1

	3.8

	3.7.fp8

	3.7.fp7

	3.7.fp6

	3.7.fp5

	3.7.fp4

	3.7.fp3

	3.7.fp2

	3.7.fp1

	3.7

	3.6.fp2

	3.6.fp1

Trademarks

UForge is a registered trademark of UShareSoft, a Fujitsu company.

LINUX is a registered trademark of Linus Torvalds.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Oracle, GlassFish, Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation and/or its affiliates.

Apache Ant, Ant, and Apache are trademarks of The Apache Software Foundation.

Red Hat Enterprise Linux is a trademark of Red Hat.

MySQL and the MySQL logo are the servicemarks, trademarks, or registered trademarks owned by Oracle Corporation Inc.

UNIX is a registered trademark of the Open Group in the United States and in other countries.

Other company names and product names are trademarks or registered trademarks of their respective owners.

Copyright FUJITSU LIMITED 2019

All rights reserved, including those of translation into other languages. No part of this manual may be reproduced
in any form whatsoever without the written permission of FUJITSU LIMITED

High Risk Activity

The Customer acknowledges and agrees that the Product is designed, developed
and manufactured as contemplated for general use, including without limitation,
general office use, personal use, household use, and ordinary industrial use, but is not
designed, developed and manufactured as contemplated for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could lead directly to
death, personal injury, severe physical damage or other loss (hereinafter “High Safety
Required Use”), including without limitation, nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support
system, missile launch control in weapon system. The Customer shall not use the
Product without securing the sufficient safety required for the High Safety Required Use.
In addition, FUJITSU (or other affiliate’s name) shall not be liable against the Customer
and/or any third party for any claims or damages arising in connection with the High
Safety Required Use of the Product.

Export Restrictions

Exportation/release of this document may require necessary procedures in accordance
with the regulations of your resident country and/or US export control laws.

Architecture Considerations

The following sections describe in detail things to consider when deploying a UForge platform.

	UForge Platform Overview

	Reliability

	Security

	Storage Considerations

	Scalability through Partitioning

	Image Generations

	Estimating Scan Size

	Deployment Examples

	Network Topology

	Minimum Software Topology

	Security Options

	High Availability

UForge Platform Overview

UForge is a scalable multi-tenant platform. UForge can be split into the following distinct parts.

	UForge Server – This contains all the business logic of UForge, handling all incoming user requests.

	Meta-data SQL Store – A database holding all the configuration information and data of the platform.

	LDAP Service – LDAP holding user authentication and access information

	IDM Service – Authentication and authorization module

	Generation Cluster – A grid engine for scheduling and executing image generations

	Event-bus – Rabbit MQ

	Proxy cache - Squid

The UForge platform can be deployed on physical machines or in a virtualized or cloud environment.

[image: ../../_images/UForge-architecture_2.jpg]
UForge Server. The UForge Server is a RESTful (Representational State Transfer) web service built on top of Java and using the JSR-311 reference implementation (project Jersey). UForge Server is based on the design principles of REST and Resource Oriented Architecture (ROA). Resources are references with a unique global identifier (URI). UForge Server uses the semantics of the HTTP protocol to manipulate these resources. The HTTP response codes are used to determine whether a user’s request was treated successfully or not.

Information is returned to the client in either XML or JSON, depending on the Accept-Type header attribute used by the client. If no Accept-Type header is provided, XML is returned by default.
To ensure security, communication with the UForge Server is done via HTTPS.
UForge Server provides authentication (AuthN) and authorization (AuthZ) modules. These modules can be customized by the customer to provide or use an alternative mechanism for authentication and authorization. By default these modules communicate with the IDM service. This service determines whether a request has the correct authentication and the correct access.

The UForge Server interacts with the SQL Store using Hibernate. Hibernate is a high-performance Object/Relational persistence and query service. Hibernate maps from Java classes to database tables and from Java data types to SQL data types. It provides data query and retrieval facilities, providing a buffer between the two data representations and enables a more elegant use of object orientation on the Java side.
The UForge Server is deployed inside a web/application server container. UForge, by default, uses Tomcat as the application server container.

Proxy Cache. UForge AppCenter includes a proxy cache. The proxy used is Squid. It is used for caching and centralizes all outgoing traffic. This improves the performance of UForge, specifically for the population of distribution repositories.

IDM Service. The UForge Identity management module is based on Apache Syncope (APL2 license). The module allows management of auditing (reports), policies, roles, users, tasks and entitlements. At present UForge uses this module for authentication and role-based access control (authorization). The persistence store for the UForge IDM is the SQL Store (described below) and there is a resource connector to the LDAP Service for storage of roles/users and entitlements in an ldap repository backend. The IDM service is deployed inside a web/application server container. UForge, by default, uses Tomcat as the application server container.

This IDM Service can be extended to provide a wider identity and access management (IAM) integration to an existing enterprise or corporate IAM system or to a brand new standards compliant IAM system(s) by using open source industry standard resource connectors.

LDAP. This service is an industry standard powerful AuthN ldap (v3) pure java server, based on the open source ForgeRock’s OpenDJ offering. This can be run in single instance mode or multi-master replication mode for robustness.

SQL Store. This is a relational database holding all the meta-data of UForge. Meta-data includes such items as:

	Appliance information including which operating system packages are included, install profile, middleware and configuration information.

	Images that have been generated from an appliance

	Images that have been published to a virtual or cloud platform

	Package information for an operating system

	Third party project software components

By default MariaDB is used as the SQL Store.

Generation Cluster. Image generation is I/O intensive and may take several minutes to complete. Consequently an HPC cluster is used to execute image generation jobs. There are two parts to this cluster:

	One or more compute nodes to execute a generation job

	A resource management system or batch scheduler that manages the reservation and access to the compute nodes

The resource management system holds its configuration information inside the meta-data SQL Store. The generation cluster is based on an open source project called OAR that is heavily used in production clusters of over 5000 nodes capable of handling over 5 million jobs.

Event-bus. UForge AppCenter uses RabbitMQ as an event bus. This event bus allows UForge administrators to track a number of user events on the platform. For more information on managing Rabbit MQ see: http://rabbitmq.com

UForge Clients. UForge provides a client, called UForge Portal that connects to UForge Server via HTTPS. This provides an interactive, visual experience when designing appliances or application stacks that can be deployed on physical, virtual and cloud environments. Consequently, UForge does not need to provide any presentation information to the client, greatly reducing the information (and therefore bandwidth) sent to the client.

[image: ../../_images/uforge-arch-fe.jpg]
UForge allows users to implement their own clients to interact with UForge. UForge provides a RESTful API, allowing businesses to create a mashup and expose certain functionalities of UForge in their websites and portals. UForge provides two SDKs:

	Java

	Python

Users can use other languages to communicate with UForge.

Repository Caching

UForge AppCenter uses a repository cache in which it stores OS repositories as new images are generated. This means that the cache is empty when the AppCenter is installed and will be populated as images are generated by users. The cache ensures that all the versions a user needs are always available to generate images. As users generate images, the AppCenter connects to the official repositories to get the repositories and stores them in the cache.

[image: ../../_images/caching-1.png]

Infrastructure Setup

UForge can be installed either on physical machines or in a virtual or cloud environment. The minimal installation requirements for UForge are:

	One physical or virtual machine where UForge will be installed

	A NAS or SAN for storage

UForge AppCenter Node Prerequisites

The UForge AppCenter components can be run on one physical or virtual machine, or can be distributed over several physical or virtual machines for scaling and reliability.

The UForge AppCenter requires the following hardware:

	CPU: 64-bit, 8 or more cores

	RAM: 16GB or more

	Local Hard Drive: 400GB

	NAS/SAN Storage: 200 GB (though this might be much more depending upon the usage)

This is the minimum for an “all in one” solution. For more information, refer to Minimum Software Topology.

Reliability

Fault tolerance is an important consideration for large-scale deployments. UForge platform has several types of data that must be replicated.

	The meta-data stored in the SQL store. The meta-data SQL store is replicated by using either master-slave or clustering. Both these configurations are supported by Percona Server. These configurations help scale-out the system and provide a level of fault tolerance if one of the database servers fails.

	The LDAP service data can be replicated over multiple LDAP instances via MMR (Multi-Master Replication)

	Binary data including operating system packages, project packages, uploaded software packages, license files, generated images and logo images. The binary data is stored on a storage system. This can be on a local filesystem of the database or on a NAS or SAN. This data is transparently replicated using RAID techniques.

In order to make the web service tier fault tolerant, multiple web servers can be deployed and load balanced. The administrator may also wish to have multiple load balancers in case the load balancer itself fails.

Security

UForge communicates with clients using HTTPS to ensure a secure connection. However, when deploying UForge, other security measures should be considered:

	Add a firewall in front of the web service tier, to only expose the HTTPS port.

	Provide a logical sub-network to protect the database, LDAP, storage and generation cluster (DMZ).

Storage Considerations

The UForge AppCenter requires a variable amount of storage, depending, among other things, on the number of image generations and users. During the configuration it is important to size the local storage the various node instances making up the deployment and, if any, the size of the shared remote storage.

Local storage is used for installing the UForge service software and free disk space for log files.

Warning

Logs for OpenDJ are stored under /opt/OpenDJ/logs and general usage logs for Tomcat and syncope are stored in subdirectories of /var:

	/opt/Tomcat/logs is a symlink to /var/log/tomcat

	/opt/syncope/log is a symlink to /var/log/tomcat/syncope

Therefore, it is important to make sure there is enough space available under /opt and /var.

 Scalability through Partitioning

Scalability through Partitioning

UForge was designed from the ground up to scale to meet the needs of businesses and service providers with 100,000s of users. The key to scaling is partitioning. Effective partitioning is based on leveraging “locality of reference” for both processing and data – if certain servers are specialized to solve a subset of the bigger problem, then the essential code and date are more likely to be in memory or close at hand. Partitioning techniques include vertical partitioning of functional tasks and horizontal partitioning of data and associated processing. Partitioning also helps to implement security to the platform.

Partitioning is increased by other distributed system techniques like automated replication, load balancing and failover.

Vertical Partitioning allows complex processing tasks to be divided into subtasks that can be independently optimized and managed. Vertical partitioning in UForge primarily consists of off-loading or splitting the I/O intensive generation tier, web service tier and database tier.

This allows the administrator to scale-up independently the number of CPUs, RAM and disk size for each of the tiers.

Horizontal Partitioning is crucial for large scale deployments. UForge is horizontally partitioned for larger deployments where thousands of users are required to interact simultaneously with the system.

One of the big bottlenecks, however, in such architectures is the database. When scaling out the web service tier, the number database reads and writes increases, and therefore the database becomes saturated.

Firstly UForge uses Db sharding. This basically consists of splitting up the data into buckets (shards) that can be stored on more than one database instance. The second is caching (memcached) which is an in-memory key-value store for small chunks of arbitrary data from results of database calls. This reduces the amount of potential reads directly into the database.

To help scale out further you can also set up a database cluster, providing multiple database instances to the web service tier (the default database service does not support clustering).

Such bottlenecks can also be reduced by scaling-up (vertical partitioning) where more RAM and CPU is provided to the machine.

The generation cluster is intrinsically scalable, allowing the administrator to easily add new compute nodes to scale-out the number of simultaneous generations. OAR also provides the ability to deploy multiple schedulers and to configure them in master-slave mode.

 Image Generations

Image Generations

Image generations are very I/O intensive compared to CPU, consequently only 1 core per simultaneous generation is required. Therefore for 10 simultaneous generations, a total of 10 cores are required for the compute notes.

The generation capacity of UForge depends on the total number of subscribers using the service. From experience, the ratio between generation capacity per week and the number of subscribers can be calculated as:

number of subscribers x 0.022 = generation capacity/week

This is assuming that UForge is used 24 hours a day. If the service is only used in one geography, then users will typically use the platform within an 8 hour period. Therefore the generation capacity will have to be multiplied by 3 (as the other 2/3 of the day, no generations will take place). For an 8 hour day, the generation capacity per week required for a certain number of subscribers can be calculated as:

number of subscribers x 0.066 = number of generations/week

On average, a generation takes about 5 minutes (this depends upon the size of the image being created and whether it requires to be compressed). For each core used to generate images, the total generation capacity per week can be calculated as:

12 x number of hours x 7 = generation capacity per core

For an 8 hour period:

12 x 8 x 7 = 672/week (per core)

For an 24 hour period:

12 x 24 x 7 = 2016/week (per core)

 Estimating Scan Size

Estimating Scan Size

It is difficult to estimate sizing of scans. However, the following guidelines may be useful to plan your first scan:

average scan size x number of scans

Scan sizes vary from 100 KB to 12 GB

You should note that the data that will be scanned does not include operating systems known by UForge. For example, Debian or other OS data will not be included in the scan size.

Also, if you have already run a scan, only the delta information will be included.

 Deployment Examples

Deployment Examples

How to organize your UForge configuration depends on the specific customer needs. This may include:

	The number of users as well as the number of simultaneous connections to the platform

	The number of simultaneous generations

	The number of projects in the project catalog

	The SLA of UForge

	Whether the service needs to be reached over multiple sites

	Whether UForge is exposed to 3rd party customers and partners, or for internal use only

Note that UForge can be deployed on physical machines or on a virtual or cloud platform. The word ‘node’ describes either the specification of a physical machine or a virtual machine instance running in the virtual or cloud environment.

Mono Node Proof of Concept

If you want to set up a mono-node POC (Proof of Concept) you should have the following:

	10 CPU

	16 GB memory

	150 GB local hard drive (standard or SSD)

	300 GB local hard drive (for the generation processes). SSD is preferred for performance reasons.

	1 additional NAS or disk for user data (size will depend on user data, it will store the generated images and scans - 1 TB is typically sufficient for a POC)

Multi-node AppCenter

The minimum software topology is described in Minimum Software Topology. The following is an overall recommentation, assuming you are grouping the nodes.

	Node

	RAM

	CPU

	Hard Drive

	Comment

	DB/LDAP/OAR

	10 GB

	4

	100 GB

	

	Web Service

	6 GB

	4

	15 GB

	

	UI (portal)

	3 GB

	2

	15 GB

	

	Compute Node
(2 identical)

	6 GB

	4

	15 GB +
500 GB SSD

	Alternative is 1 TB SSD NAS
Shared between the 2 compute
nodes. This storage could be
upgraded if needed

	NAS distributions

	
	
	500 GB

	

	NAS user data

	
	
	7 TB

	

Note

The size of the user data NAS depends on the expected size of the user data

 Installing UForge

Installing UForge

To install a fully functioning UForge platform, you must install and configure the UForge services as well as populate the UForge Repository with the operating systems you wish to build your server templates from.

This section covers:

	UForge Installation Overview

	UForge Repository Setup

	UForge Repository on Shared Storage

	UForge Repository on Local Storage

	Installing from an ISO

	Post-Installation Cleanup

	Configuring UForge

	Cloud Platform Default Ports

	Testing the Deployment

 UForge Installation Overview

UForge Installation Overview

To install a fully functioning UForge platform, we provide the following 2 ISOs:

	UForge Setup ISO – this includes all the necessary elements to have a functioning “UForge in a Box”

	ISO which contains the skeleton of the distribution installers in case you want to create ISO images with UForge. This only needs to be installed if you want to create ISO images.

Installation Checklist

Before you start deploying UForge, ensure that you have all the following:

	UForge Setup ISO

	Your activation credentials (ID and activation key) provided by your vendor

	Architecture of the deployment (number of nodes and networking topology. See Network Topology)

	The necessary system requirements (see Storage Considerations)

	Your SSL certificates, key and chaining certificates, and all files corresponding to the following entries in /etc/httpd/conf.d/ssl.conf:

	SSLCertificateFile

	SSLCertificateKeyFile

	SSLCACertificateFile

	SSLCertificateChainFile (might be empty)

Note

Ideally, UForge should be setup with your machine connected to internet, in order to be able to complete all the configuration steps, namely accessing:

	OS distribution repositories

	UForge Tools repository

	a YUM repository, in order to obtain all the UForge package when updating UForge.

However, UForge can be setup and operated without Internet. A proxy server can be setup in order to obtain updated UForge packages.

 UForge Repository Setup

UForge Repository Setup

The UForge Repository is a storage area containing:

	Operating system packages and updates

	Project catalog binaries

	User My Software binaries

	Generated images from users using the platform

	Data from user scans

The operating system and project binaries are separated from the My Software binaries and the images generated.

Warning

When new projects are populated by the administrator after the initial install, they are copied in the same location as My Software and generated images.

 UForge Repository on Shared Storage

UForge Repository on Shared Storage

When using shared storage NFS is used to share the information between the various UForge nodes. To setup the NAS or SAN for the UForge Repository you must create two shared directories, one for the operating system data and the other for all the user data (My Software and images generated).

To setup the shared storage:

	Log in to the machine where the NFS server is running

	Create the operating system directory, for example: /volume1/DISTROS

The following NFS options are required:

*(rw,async,no_wdelay,no_root_squash,insecure_locks,anonuid=0,anongid=0)

	Create the user data directory, for example: /volume1/USER_DATA

The following NFS options are required:

*(rw,async,no_wdelay,no_root_squash,insecure_locks,anonuid=0,anongid=0)

	Check the mount points:

mount 192.20.777.205:/volume1/USER_DATA/ /mnt
su - tomcat
cd /mnt

	Execute the command:

touch test

	If it returns:

touch: cannot touch `test': Permission denied

Then execute the following commands (as root)

cd /mnt
chown -R tomcat:tomcat .

	Confirm you can create a file on /mnt as user tomcat. Then perform the following:

cd ~
umount /mnt

 UForge Repository on Local Storage

UForge Repository on Local Storage

When using local storage, UForge must already be installed, but not configured. Create two directories one for the operating system data and the other for all the user data (for example My Software and images generated).

	Create the operating system directory, for example: /space/DISTROS

	Create the user data directory, for example: /space/USER_DATA

 Installing from an ISO

Installing from an ISO

Note

The ISO install will be done on /dev/sda. The kickstart automates the installation of the operating system on the first disk, which must be managed by either a SCSI or SATA controller.

 Configuring UForge

Configuring UForge

Once the installation is complete on all the nodes you need for the UForge AppCenter, you are now ready to configure all the UForge AppCenter services. This is done via the UForge Deployment Wizard that guides you through the final steps of the installation process.

Note

The name of LVM VolGroup Name must be unique. The default when installing UForge will have a format similar to vg_uss_150910-lv_uss_150910. If your scanned instance has the same volume group name, or if you set up advanced partitioning with the same name, you will get an error when migrating.

 Cloud Platform Default Ports

Cloud Platform Default Ports

To allow UForge to register machine images, you must ensure that there is network connectivity to the cloud platforms you want to push the machine images to. The table below provides the default port numbers of the cloud platforms supported, and indicates whether UForge uploads the machine image or requests the cloud platform to download.

Warning

For private cloud platforms, the port number may not be the default port number indicated.

 Testing the Deployment

Testing the Deployment

Once the configuration phase is complete, you should carry out some basic sanity tests to ensure that the UForge AppCenter is running normally:

Step 1: Check if the web service is operational

Use the values in the uforge.conf to contact the web service and expect a 200 OK response.

Get the values from the uforge.conf and add them to some environment variables (you could also manually view the uforge.conf)

$ eval `grep '^UFORGE_WEBSVC_\|^UFORGE_GF_INTERNAL_IP\|^UFORGE_GF_HTTP_PORT\|^UFORGE_GF_WEBSVC_ROOT_CONTEXT' /etc/UShareSoft/uforge/uforge.conf`

Run a simple http request (using basic authentication) using curl

$ curl http://$UFORGE_GF_INTERNAL_IP:$UFORGE_GF_HTTP_PORT/$UFORGE_GF_WEBSVC_ROOT_CONTEXT/users/$UFORGE_WEBSVC_LOGIN -H "Authorization:Basic $UFORGE_WEBSVC_LOGIN:$UFORGE_WEBSVC_PASSWORD"
--verbose

* About to connect() to 10.0.0.240 port 9090 (#0)
* Trying 10.0.0.240... connected
* Connected to 10.0.0.240 (10.0.0.240) port 9090 (#0)
> GET /ufws-3.0/users/root HTTP/1.1
> User-Agent: curl/7.20.1 (x86_64-redhat-linux-gnu) libcurl/7.20.1 NSS/3.12.8.0 zlib/1.2.3 libidn/1.16 libssh2/1.2.4
> Host: 10.0.0.240:9090
> Accept: */*
> Authorization:Basic root:welcome
>
< HTTP/1.1 200 OK
< X-Powered-By: Servlet/3.0 JSP/2.2 (GlassFish Server Open Source Edition 3.1.1 Java/Sun Microsystems Inc./1.6)
< Server: GlassFish Server Open Source Edition 3.1.1
< Last-Modified: Thu, 03 May 2012 08:32:18 GMT
< ETag: "ef286bf07b8d18928287e12cb122ccf2"
< Content-Type: application/xml
< Content-Length: 5477
< Date: Thu, 03 May 2012 08:33:11 GMT
...<rest of the body removed>

Step 2: Check to see if the database is running

The database service should be running and available on the port 3306 and the database table is present. The Percona Server instance should have usharedb and oar

$ systemctl status mysql
MySQL running (22661) [OK]

Get the values from the auth.conf and add them to some environment variables (you could also manually view the auth.conf)

$ eval `grep '^UFORGE_DB' /etc/UShareSoft/auth.conf`
$ echo "show databases" | mysql -f -N -u $UFORGE_DB_ADMIN_LOGIN -p$UFORGE_DB_ADMIN_PASSWORD -h db
information_schema
mysql
oar
performance_schema
usharedb

Step 3: Check the generation cluster resources

Check that all the cluster resources are available (‘alive’). On each compute node

$ oarnodes | awk '/resource_id/ {n=$NF} /state : Suspected/ {printf "oarnodesetting -s Alive -r %s\n",n}' | sh

This should return without any output.

 Further AppCenter Configuration

Further AppCenter Configuration

This section assumes that you have completed the installation of your UForge platform. Once it is installed and configured, you can:

	Modifying the UForge Platform External URL Endpoints

	Adding a Compute Node

	Removing a Node

	Configuring Apache and Tomcat Web Services to use SSL Certificate

	Configuring SMTP Proxy

	Configuring UForge Behind Enterprise Proxy

	Configuring the Web Service

	Configuring the Database

	Configuring the Scheduler

	Managing the Watchdog Services

	Tuning the Services

	Using the Event Bus

	Configuring Email Notification Service

	Modifying the UForge IP

	Customizing UForge Authentication for SSO

	Allowing https Repositories with Self-Signed Certificate

	Populating Database with OS Packages

	Updating an OS Repository

	Deleting an OS Repository

	Hosting Proprietary Packages

	Populating ISO Skeleton

	Configuring Cloudsoft AMP

	Setting the Creation Date and Time

 Modifying the UForge Platform External URL Endpoints

Modifying the UForge Platform External URL Endpoints

There are three external URL endpoints for the UForge platform, namely:

	URL endpoint to access the UForge Portal (user interface)

	URL endpoint to access directly the REST web service for command-line tools and REST API calls

	URL endpoint for cloud platforms to download machine images from UForge. This URL endpoint is not used by end users, but only by cloud platforms that request to download machine images, rather than UForge uploading those machine images

[image: ../../_images/external-endpoints.png]
These URL endpoints are automatically created based on the external hostname provided during the initial configuration of the UForge platform (see Configuring UForge). These URL endpoints can be changed by updating certain variables in the /etc/UShareSoft/uforge/uforge.conf file.

The UForge Portal URL endpoint is constructed using the following variables:

https://<UFORGE_PROXY_INFOS>/<UFORGE_UI_ROOT_CONTEXT>

The URL endpoint for direct REST web service access is constructed using the following variables:

https://<UFORGE_PROXY_INFOS>/<UFORGE_API_ROOT_CONTEXT>

The download URL endpoint is constructed using the UFORGE_IAAS_DOWNLOAD_URL variable.

If you wish to use http rather than https (not recommended) then you require to set the following variable in the uforge.conf file:

UFORGE_PROXY_USE_SSL = false

For example, if you set the following variables in uforge.conf, will result in the following external URLs:

UFORGE_PROXY_INFOS = hq.example.com:5666
UFORGE_UI_ROOT_CONTEXT = /ui
UFORGE_API_ROOT_CONTEXT = /apis
UFORGE_IAAS_DOWNLOAD_URL = http://hq.example.com:5777/downloads
UFORGE_PROXY_USE_SSL = true

Resulting external URLs:

* UForge Portal: https://hq.example.com:5666/ui
* REST URL endpoint: https://hq.example.com:5666/apis
* Machine Image downloads (for external cloud platforms): http://hq.example.com:5777/downloads

To update the external URLs:

	Update the /etc/UShareSoft/uforge/uforge.conf file for each node with the updated variables you wish.

	Launch the following two scripts (if multi-node the following order should be respected: compute notes, db nodes, web service, and UI nodes):

$ /opt/UShareSoft/uforge/tools/update_scripts/uforge_update.sh
$ /opt/UShareSoft/uforge-client/bin/uforge_ui_update.sh

 Adding a Compute Node

Adding a Compute Node

You can add a new OAR compute node which was instantiated from UForge but which was not configured as part of the initial deployment as follows.

	Make a snapshot of the UForge Server (to be able to come back to the state without the additional OAR compute node).

	Initial setup: oar-server and oarnode1 to oarnodeN already configured. Initialise two variables as follows:

	OARNODEX=oarnodeX. Replace X in oarnodeX with the number of the new node to be added

	IPoarnodeX=10.0.0.123. Replace 10.0.0.123 with the local IP address of the new node to be added

Note

The following commands are run on the first existing oarnode, for example oarnode1 until stated otherwise.

 Configuring Apache and Tomcat Web Services to use SSL Certificate

Configuring Apache and Tomcat Web Services to use SSL Certificate

It is highly recommended that all communication with UForge is done via HTTPS. After the initial installation of UForge, neither the HTTP server (Apache) nor the application server (Tomcat) have yet been configured to use a SSL certificate and allow HTTPS.

To configure both servers to use an SSL certificate:

	Log in as root to the machine running the UForge Apache and Tomcat Web Services.

	Copy the SSL certificate files locally to the machine. Note that you should have three or four files, for example:

	SSLCertificateFile: server.crt.pem

	SSLCertificateKeyFile: server.key.pem

	SSLCACertificateFile: CA.crt.pem

	SSLCertificateChainFile: intermediate.CA.crt.pem (this one is optional)

You need to build a self contained certificate as follows:

$ cat server.crt.pem CA.crt.pem > server_CA_chain.crt.pem

or:

$ cat server.crt.pem intermediate.CA.crt.pem CA.crt.pem > server_CA_chain.crt.pem

Note that .pem files contain the following type of data for certificate files:

$ cat server.crt.pem
-----BEGIN CERTIFICATE-----
MIIHJTCCBg2gAwIBAgIDB25YMA0GCSqGSIb3DQEBBQUAMIGMMQswCQYDVQQGEwJJ
...
aW9uIEF1dGhvcml0eTADAgECGmRMaWFiaWxpdHkgYW5kIHdhcnJhbnRpZXMgYXJl
V4XfZvZtrRcZ
-----END CERTIFICATE-----

And the following data for the key file:

$ cat server.key.pem
-----BEGIN PRIVATE KEY-----
MIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQDaRIAE7wrKbS9T
...
GdIr+qaNjk+eZLVsuPsAvwPlsWI/Cip7Zqygtvviteyen0VZbLpRJgbbjXqh9GwP
G33VnWF89pfm5FNRu3WHIf8Ukw==
-----END PRIVATE KEY-----

If this is not the case, refer to the OpenSSL documentation on how to convert certificate and key files from one format to another.

	Put the following entries in /etc/httpd/conf.d/ssl.conf:

	SSLCertificateFile /etc/pki/tls/certs/server.crt.pem

	SSLCertificateKeyFile /etc/pki/tls/private/server.key.pem

	SSLCertificateChainFile /etc/pki/tls/certs/intermediate.CA.crt.pem

	SSLCACertificateFile /etc/pki/tls/certs/CA.crt.pem

	Verify the permissions and ownerships of these files

$ ll -d /etc/pki/tls/certs/server.crt.pem /etc/pki/tls/private/localhost.key /etc/pki/tls/private/ /etc/pki/tls/certs/
drwxr-xr-x. 2 root root 4096 Sep 25 12:05 /etc/pki/tls/certs/
-rw-------. 1 root root 1188 Sep 25 12:05 /etc/pki/tls/certs/server.crt.pem
drwxr-xr-x. 2 root root 4096 Sep 25 12:05 /etc/pki/tls/private/
-rw-------. 1 root root 887 Sep 25 12:05 /etc/pki/tls/private/server.key.pem

	(Re)start the httpd server:

$ service httpd restart

If the server does not start, this may be because of a bad certificate, key or CA certificate file. In this case, check the appropriate logs in /var/log/httpd.

	Verify the validity of the certificates:

$ openssl s_client -connect localhost:443
...
Verify return code: 0 (ok)

Ctrl-C or Ctrl-D to leave openssl client

If there is a problem with the certificate you might get outputs like:

$ openssl s_client -connect localhost:443
...
Verify return code: 18 (self signed certificate)

or

$ openssl s_client -connect localhost:443
...
Verify return code: 21 (unable to verify the first certificate)

	Verify the certificate:

$ openssl s_client -showcerts -connect <ip-of-the-uforge-web-service-machine>:<port>

Or you can also use same openssl client command used for the Apache server in step 6.

To verify that the new certificate is correct and if the Tomcat service is accessible from the outside, go to http://www.digicert.com/help/ and type the public name or IP address of your web service.

Note that there is no way to specify another port than HTTPS (443) on this page therefore you might need to add an iptables redirection rule like:

$ iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 443 -j REDIRECT--to-port 9191

 Configuring SMTP Proxy

Configuring SMTP Proxy

Once your UForge platform deployment is complete you can configure SMTP proxy. To configure SMTP:

	In /etc/UShareSoft/uforge/uforge.conf you can modify:

	UFORGE_RELAY_HOST=

	UFORGE_RELAY_PORT=

	UFORGE_RELAY_USER=

	UFORGE_RELAY_PASSWORD=

	If you want to use SSL set: UFORGE_RELAY_USE_SSL= 1 or 0

These can be empty.

	Run the following command on all the nodes (if multi-node the following order should be respected: compute notes, db nodes, web service nodes):

$ /opt/UShareSoft/uforge/tools/update_scripts/uforge_update.sh

 Configuring UForge Behind Enterprise Proxy

Configuring UForge Behind Enterprise Proxy

Once your UForge platform deployment is complete you can configure it behind your enterprise proxy if you have not already done so with the deployment wizard. You can configure UForge to use both an HTTP(S) and/or a SOCKS5 proxy.

Note

If you have a proxy and you wish to register machine images to AWS, you will require to configure UForge to use a SOCKS5 server.

 Configuring the Web Service

Configuring the Web Service

Each UForge Web Service instance runs inside a Tomcat application server. The web service has the following basic configuration information that is stored in a central configuration file: uforge.conf. The main configuration attributes for the web service are:

	External hostname used for incoming user connections

	External hostname for downloading images (this uses port 80 allowing all cloud platforms to be able to communicate with UForge for publishing images)

	Internal IP address used to connect with the other UForge services

	HTTP port (default: 8080)

	HTTPS port (default: 8443)

	Administration console port (default: 4848)

	Administration console credential information (user and password)

	Root context of the web service (for example /uforge)

When installing UForge via the deployment wizard some of the configuration attributes can be decided by the administrator. The deployment wizard also creates the uforge.conf file with all the configuration information.

To view the uforge.conf file:

	Log in to the web service node as root:

$ ssh root@<ip address of the node>

	Open the uforge.conf file:

$ vi /etc/UShareSoft/uforge/uforge.conf

	After making appropriate changes in these files, you should run the following command on all the nodes (if multi-node the following order should be respected: compute notes, db nodes, web service nodes):

$ /opt/UShareSoft/uforge/tools/update_scripts/uforge_update.sh

For more information on Tomcat, see http://tomcat.apache.org

 Configuring the Database

Configuring the Database

UForge uses the MariaDB database to store all the UForge meta-data and user information. The web service communicates with the database using hibernate. When installing UForge using the deployment wizard, one database instance is configured.

Note

By default no mechanism is configured to backup the contents of the UForge database. MariaDB can be configured as a cluster or in master-slave mode to provide reliability and to have a replicate of the data. Regular backups of the database should also be done.

 Configuring the Scheduler

Configuring the Scheduler

The scheduler can be configured to throttle the maximum number of:

	generations allowed in parallel per compute node.

	publishes allowed in parallel per compute node. A publish is when a user wishes to upload and register a generated image to a particular cloud environment.

	shares allowed in parallel per compute node. A share is when a user requests to share a template that they have in their private workspace.

	live system scans allowed in parallel per compute node. This is used for migrating live systems from one environment to another.

By default, after installing UForge using the deployment wizard, UForge will have X compute nodes. The scheduler is configured to allow 1 generation that has been chosen during the deployment on each compute node.

You can re-configure the scheduler to have different scheduling policies for different job types for each compute node. This is done be declaring a resource with a nature in OAR. Each nature corresponds to a specific job type. For example by declaring 4 resources with the nature ID 0 for compute node node1 will configure the scheduler to allow up to 4 parallel generations. The following table shows the mapping between the different job types and the nature ID.

	Job Type

	Nature ID

	Image Generation Job Type

	0

	Publish Image Job Type

	1

	Share Job Type

	2

	System Scan Job Type

	3

	Update cache repo (cron job)

	4

	Update_repos_pkgs.sh (Spider) (cron job)

	5

By default UForge (during the deployment) populates oarnodesetting, and uses the “overflow” mode. If you want to modify this, refer to Changing the OAR Configuration to Round-Robin.

Viewing Current Resources

To view all the current resources in the scheduler, log in to the oar scheduler node as root and run the command oarnodes:

$ ssh root@<ip address of the node>
$ oarnodes
network_address : compute1.example.com
resource_id : 1
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, nature=0, network_address=iso, type=default, cm_availability=0

network_address : compute1.example.com
resource_id : 4
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, nature=1, network_address=vm, type=default, cm_availability=0

This provides the basic information of each resource including:

	network_address: the compute node this resource is attached to

	resource_id is the ID of the node

	state is the current state of the resource

	properties: the main properties of the resource, including the nature ID that determines the job type this resource is providing

Adding or Updating a Resource

To add or update a resource, first log in to the oar scheduler node as root.

To add a resource to compute node node1 allowing to generate an image:

$ oarnodesetting -a -h node1 -p cpuset=0,nature=0;
$ oarnodes
network_address : node1
resource_id : 92
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, nature=0, network_address=vm, type=default, cm_availability=0

To change a current resource (resource_id: 92) to a different job type (for example publish images):

$ oarnodesetting -h node1 -r 92 -p nature=1;

Removing a Resource

To remove a resource, first log in to the oar scheduler node as root.

To remove a resource from the compute node, run the following commands:

$ oarnodesetting -s Dead -r <resource_id>
$ oarremoveresource <resource_id>

Changing the OAR Configuration to Round-Robin

By default UForge (during the deployment) populates oarnodesetting using the “overflow” mode. This means that when a oar-node is full (in term of jobs), UForge overflows to the second node, and so on. This fits well with a typical topology where there is one powerful generation node and other smaller generation nodes (used in case of overflow).

This being said, it is not the role of UForge to replace the role of the scheduler and manage all the different topologies (Overflow mode, Alternative mode, custom mode, etc.). UForge integrates the oar scheduler which can be configured according to the user requirements.

So, by default, when a new OAR job is launched, it is processed on one OAR node until the number of simultaneous executions exceeds the set value, and the next OAR node is used when the number of simultaneous executions exceeds the set value.

If you wish to have a round robin assignation of jobs, you can change the OAR configuration as follows.

	In the oar-server node (and only on the node where oar-server runs, not on the other compute nodes), edit /etc/oar/oar.conf.

	Comment the SCHEDULER_RESOURCE_ORDER=[...] line and add the new one with other parameters:

#SCHEDULER_RESOURCE_ORDER="scheduler_priority ASC, state_num ASC, available_upto DESC, suspended_jobs ASC, network_address DESC, resource_id ASC"

SCHEDULER_RESOURCE_ORDER="resource_id ASC"

	Restart the oar-server: service oar-server restart. In this case we will order the job scheduling by resource_id in ascending order. This will work only if your oarnodesetting are populated by nature and server.

network_address : oarnode1
resource_id : 1
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, available_upto=0, nature=0, network_address=oarnode1, last_available_upto=0, type=default

network_address : oarnode2
resource_id : 2
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, available_upto=0, nature=0, network_address=oarnode2, last_available_upto=0, type=default

network_address : oarnode1
resource_id : 3
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, available_upto=0, nature=0, network_address=oarnode1, last_available_upto=0, type=default

network_address : oarnode2
resource_id : 4
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, available_upto=0, nature=0, network_address=oarnode2, last_available_upto=0, type=default

network_address : oarnode1
resource_id : 234
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, available_upto=0, nature=1, network_address=oarnode1, last_available_upto=0, type=default

network_address : oarnode2
resource_id : 235
state : Alive
properties : deploy=NO, besteffort=YES, cpuset=0, desktop_computing=NO, available_upto=0, nature=1, network_address=oarnode2, last_available_upto=0, type=default
[...]

In this example, if you look the nature=0 (in the properties). We have:

oarnode1 = id 1
oarnode2 = id 2
oarnode1 = id 3
oarnode2 = id 4
[...]

and for nature=1, we have:

oarnode1 = id 234
oarnode2 = id 235
oarnode1 = id 236
[...]

In this case the first generation will be handled by the oarnode1 and the second by the oarnode2 (same for other types, publication is 1, scan is 3, etc.

Deleting a Job

In case of a problem, you may want to delete a job which is stuck in a waiting state.

In this case, run:

$ oardel <job_id>

 Managing the Watchdog Services

Managing the Watchdog Services

UForge has a set of watchdog services that carry out housekeeping tasks on a regular basis. These are:

	Cleanup Tickets: Task to remove generated images that are no longer attached to a parent image ticket in the database. This happens when the user “deletes” the generated image from their account. By default this is run once a day at 04:10AM.

	Update Distribution Packages: Task to regularly search the operating system repositories for any new updates and synchronize metadata into the UForge database. By default this is run every hour.

	Reset OAR Resources: Check the OAR scheduler resources and ensure that their state is “Active”. By default this is run every 5 minutes.

Each of these housekeeping tasks are registered as a cron job in the first database node of the UForge platform to schedule the task to be run periodically. The frequency of these tasks can be changed.

To change the frequency of these housekeeping tasks, you need to update the crontab. Each line of a crontab file represents a job and is composed of a CRON expression, followed by a shell command to execute. The syntax is:

dw month day hr min followed by the command to be executed

Where:

	dw is the day of the week (0 - 6) (0 is Sunday, or use names)

	month is 1 - 12

	day is day of the month (1 - 31)

	hr is the hour (0 - 23)

	min is minutes (0 - 59)

To view these cron jobs, log in to the oar scheduler node as root and view the cron jobs:

$ crontab -l
*/5 * * * * /opt/UShareSoft/uforge/cron/reset_oar_resources.sh
10 2 * * * /opt/UShareSoft/uforge/cron/cleanup_tickets.sh
10 3 * * * /opt/UShareSoft/uforge/cron/cleanup_scans.sh
42 * * * * /opt/UShareSoft/uforge/cron/update_repos_pkgs.sh
05 * * * * /opt/UShareSoft/uforge/cron/update_repos_local_cache.sh
1 8 * * * /opt/UShareSoft/uforge/cron/drop_caches.sh

To update the crontab, log in to the oar scheduler node as root and edit the crontab

$ crontab -e

Cron Job Guidelines

There is no specific order to be respected when running cron jobs. These jobs are not inter-dependent.

*/5 * * * * /opt/UShareSoft/uforge/cron/reset_oar_resources.sh

This needs to be launched on a regular basis to avoid having issues with the OAR scheduler computation nodes. In fact, it happens, following network issue or other, that nodes move to state “Suspected”. This job tries to fix that.

This job executes very quickly and does not take resources on the machine.
It is set by default to 5 minutes but this can be changed.

10 2 * * * /opt/UShareSoft/uforge/cron/cleanup_tickets.sh

When a user deletes a machine image persisted on the NAS, only the metadata is removed from the database to avoid using a webservice thread to delete the file. This could take time and should be done asynchronously.

This job goes through the NAS and the database and checks which directories could be removed.

This job could potentially take a long time and be IO-intensive. It is highly recommend to execute it when there is not a lot of activity on the platform. We have set this at 2:10AM because there is not a lot of activity on our platform at that time of day.

This script could be launched several times in a day depending on the size of the infrastructure. For example, if the NAS is not so big and if there are a lot of images created and deleted per day, it might be a good to launch it several times a day.

10 3 * * * /opt/UShareSoft/uforge/cron/cleanup_scans.sh

Same as for /opt/UShareSoft/uforge/cron/cleanup_tickets.sh

42 * * * * /opt/UShareSoft/uforge/cron/update_repos_pkgs.sh

This mechanism launches UForge Spider to crawl the packages from the registered repositories.

It is important to keep these repositories up to date so that:

	when a user creates a new template, the latest package updates are listed

	when a user checks the appliance library, the number of updates available are listed

	the image generations is faster. If this is not done on a regular basis, when launching a generation, the repositories of the template distribution will be updated and the user will have to wait longer.

Also, if a repository the platform is connected to deletes packages (e.g. because of newer package version – this is not the case of UShareSoft official repositories), having the latest packages available is important.

05 * * * * /opt/UShareSoft/uforge/cron/update_repos_local_cache.sh

The UForge platform does not download all the packages from all the repositories listed. Instead, only the necessary packages are downloaded “on demand”.

In the case of repositories that remove packages (because of newer packages), it is important to be able to reproduce a machine image with the same packages even though these packages no longer exist on the remote repository.

The local partial copy of the repository is registered in the platform as another repository. Each time new packages are downloaded for a repository, the local directory is marked “to be refreshed”. When update_repos_local_cache.s